
9 Models for atmospheric propagation delays (10 June 2013)

Techniques operated for the realization of the IERS reference systems make use of electromagnetic
signals received on the surface of the Earth. During their transit of the atmosphere, the signals
experience delays which must be modeled in the analysis software. This chapter presents models for
the propagation of optical signals in the troposphere (9.1), for radio signals in the troposphere (9.2)
and for radio signals in the ionosphere (9.4). For Doppler techniques which use time-differenced
phases as observables, the models presented in this chapter should be time-differenced as well.

9.1 Tropospheric model for optical techniques

The accuracy of satellite and lunar laser ranging (SLR & LLR) is greatly affected by the resid-
ual errors in modeling the effect of signal propagation through the troposphere and stratosphere.
Although several models for atmospheric correction have been developed, the more traditional
approach in LR data analysis uses a model developed in the 1970s (Marini and Murray, 1973).
Mendes et al. (2002) pointed out some limitations in that model, namely the modeling of the eleva-
tion dependence of the zenith atmospheric delay, i.e. the mapping function (MF) component of the
model. The MFs developed by Mendes et al. (2002) represent a significant improvement over the
MF in the Marini-Murray model and other known MFs. Of particular interest is the ability of the
new MFs to be used in combination with any zenith delay (ZD) model to predict the atmospheric
delay in the line-of-sight direction. Subsequently, Mendes and Pavlis (2004) developed a more
accurate ZD model, applicable to the range of wavelengths used in modern LR instrumentation.
The combined set of the new mapping function and the new ZD model were adopted in October
2006 by the Analysis Working Group of the International Laser Ranging Service (ILRS) as the new
standard model to be used for the analysis of LR data starting January 1, 2007. The alternative
to correct the atmospheric delay using two-color ranging systems is still at an experimental stage.

9.1.1 Zenith delay models

The atmospheric propagation delay experienced by a laser signal in the zenith direction is defined
as

dzatm = 10−6
ra∫

rs

Ndz =

ra∫
rs

(n− 1) dz, (9.1)

or, if we split the zenith delay into hydrostatic (dzh) and non-hydrostatic (dznh) components,

dzatm = dzh + dznh = 10−6
ra∫

rs

Nhdz + 10−6
ra∫

rs

Nnhdz, (9.2)

where N = (n− 1) × 106 is the (total) group refractivity of moist air, n is the (total) refractive
index of moist air, Nh and Nnh are the hydrostatic and the non-hydrostatic components of the
refractivity, rs is the geocentric radius of the laser station, ra is the geocentric radius of the top of
the (neutral) atmosphere, and dzatm and dz have length units.

In the last few years, the computation of the group refractivity at optical wavelengths has received
special attention and, as a consequence, the International Association of Geodesy (IAG) (IUGG,
1999) recommended a new procedure to compute the group refractivity, following Ciddor (1996)
and Ciddor and Hill (1999). Based on this procedure, Mendes and Pavlis (2004) derived closed-form
expressions to compute the zenith delay. For the hydrostatic component, we have

dzh = 0.002416579
fh(λ)

fs(φ,H)
Ps, (9.3)

where dzh is the zenith hydrostatic delay, in meters, and Ps is the surface barometric pressure, in
hPa. The function fs(φ,H) is given by

fs(φ,H) = 1− 0.00266 cos 2φ− 0.00000028H, (9.4)
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where φ is the geodetic latitude of the station and H is the geodetic height of the station in meters
<1>, fh (λ) is the dispersion equation for the hydrostatic component

fh (λ) = 10−2 ×

[
k∗1

(
k0 + σ2

)
(k0 − σ2)

2 + k∗3

(
k2 + σ2

)
(k2 − σ2)

2

]
CCO2 , (9.5)

with k0 = 238.0185 µm−2, k2 = 57.362 µm−2, k∗1 = 19990.975 µm−2, and k∗3 = 579.55174 µm−2,
σ is the wave number (σ = λ−1, where λ is the wavelength, in µm), CCO2

= 1 + 0.534 ×
10−6 (xc − 450), and xc is the carbon dioxide (CO2) content, in ppm. In the conventional for-
mula, a CO2 content of 375 ppm should be used, in line with the IAG recommendations, thus
CCO2 = 0.99995995 should be used.

For the non-hydrostatic component, we have:

dznh = 10−4 (5.316fnh(λ)− 3.759fh(λ))
es

fs(φ,H)
, (9.6)

where dznh is the zenith non-hydrostatic delay, in meters, and es is the surface water vapor pressure,
in hPa. fnh is the dispersion formula for the non-hydrostatic component:

fnh (λ) = 0.003101
(
ω0 + 3ω1σ

2 + 5ω2σ
4 + 7ω3σ

6
)
, (9.7)

where ω0 = 295.235, ω1 = 2.6422 µm2, ω2 = −0.032380 µm4, and ω3 = 0.004028 µm6.

The subroutine FCUL ZTD HPA.F to compute the total zenith delay is available at <2>.

From the assessment of the zenith models against ray tracing for the most used wavelengths in
LR, it can be concluded that these zenith delay models have overall rms errors for the total zenith
delay below 1 mm across the whole frequency spectrum (Mendes and Pavlis, 2003; Mendes and
Pavlis, 2004).

9.1.2 Mapping function

Due to the small contribution of water vapor to atmospheric refraction at visible wavelengths, we can
consider a single MF for laser ranging. In this case, we have:

datm = dzatm ·m(e), (9.8)

where dzatm is the total zenith propagation delay and m(e) the (total) MF. Mendes et al. (2002) derived
a MF, named FCULa, based on a truncated form of the continued fraction in terms of 1/sin(e) (Marini,
1972), normalized to unity at the zenith

m(e) =

1 +
a1

1 +
a2

1 + a3

sin e+
a1

sin e+
a2

sin e+ a3

. (9.9)

Note that the same formula is used for radio techniques, but with different variables, see Equa-
tion (9.13). The FCULa MF is based on ray tracing through one full year of radiosonde data from 180
globally distributed stations. It is valid for a wide range of wavelengths from 0.355 µm to 1.064 µm
(Mendes and Pavlis, 2003) and for elevation angles greater than 3 degrees, if we neglect the contribu-
tion of horizontal refractivity gradients. The coefficients ai (i=1,2,3) have the following mathematical
formulation:

ai = ai0 + ai1ts + ai2 cosφ+ ai3H, (9.10)

where ts is the temperature at the station in Celsius degrees, H is the geodetic height of the station, in
meters, and the coefficients are given in Table 1, see Mendes et al. (2002) for details. The subroutine
FCUL A.F to compute the FCULa mapping function is available at <2>.

1originally, Saastamoinen (1972) used orthometric height, however, the formula is insensitive to the difference, so
geodetic height can be used instead without loss of accuracy.

2ftp://tai.bipm.org/iers/conv2010/chapter9
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Table 9.1: Coefficients (aij) for the FCULa mapping function, see Equation (9.10). Coefficients (ai1)
are in C−1 and coefficients (ai3) in m−1.

aij FCULa
a10 (12100.8±1.9)× 10−7

a11 (1729.5±4.3)× 10−9

a12 (319.1±3.1)× 10−7

a13 (-1847.8±6.5)× 10−11

a20 (30496.5±6.6)× 10−7

a21 (234.6±1.5)× 10−8

a22 (-103.5±1.1)× 10−6

a23 (-185.6±2.2)× 10−10

a30 (6877.7±1.2)× 10−5

a31 (197.2±2.8)× 10−7

a32 (-345.8±2.0)× 10−5

a33 (106.0±4.2)× 10−9

The new mapping functions represent a significant improvement over other mapping functions available
and have the advantage of being easily combined with different zenith delay models. The analysis of
two years of SLR data from LAGEOS and LAGEOS 2 indicate a clear improvement in the estimated
station heights (8% reduction in variance), while the simultaneously adjusted tropospheric zenith
delay biases were all consistent with zero (Mendes et al., 2002).

For users who do not have extreme accuracy requirements or do not know the station temperature, the
FCULb mapping function, which depends on the station location and the day of the year, has been
developed, see Mendes et al. (2002) for details. The subroutine FCUL B.F to compute the FCULb
mapping function is available at <2>.

9.1.3 Future developments

The accuracy of the new atmospheric delay models are still far from the accuracy required for
global climate change studies. The goal as set forth by the International Laser Ranging Service
(ILRS) is better than one millimeter. The LR community has been looking into ways to achieve
that accuracy. One significant component that is missing from the above models is to account for
the effect of horizontal gradients in the atmosphere, an error source that contributes up to 5 cm of
delay at low elevation angles. Ranging at low elevation angles improves the de-correlation of errors
in the vertical coordinate with errors in the measurement process (biases). Stations thus strive to
range as low as possible, thence the need for model improvements.

Global meteorological fields are now becoming more readily accessible, with higher spatio-temporal
resolution, better accuracy and more uniform quality. This is primarily due to the availability of
satellite observations with global coverage twice daily. Hulley and Pavlis (2007) developed a new
technique, and tested it with real data, computing the total atmospheric delay, including horizontal
gradients, via three-dimensional atmospheric ray tracing (3D ART) with meteorological fields from
the Atmospheric Infrared Sounder (AIRS). This technique has already been tested and applied to
two years of SLR data from LAGEOS 1 and 2, and for ten core, globally-distributed SLR stations.
Replacing the atmospheric corrections estimated from the Mendes-Pavlis ZD and MF models with
3D ART resulted in reducing the variance of the SLR range residuals by up to 25% for all the
data used in the analysis. As of May 2007, an effort is in progress to establish a service that will
compute these corrections for all of the collected SLR and LLR data in the future. Once this
service is in place, it is expected that this new approach will be adopted as the standard for SLR
and LLR data reductions.

9.2 Tropospheric model for radio techniques

The non-dispersive delay imparted by the atmosphere on a radio signal up to 30 GHz in frequency,
which reaches a magnitude of about 2.3 m at sea level, is conveniently divided into “hydrostatic”
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and “wet” components. The hydrostatic delay is caused by the refractivity of the dry gases
(mainly N2 and O2) in the troposphere and by most of the nondipole component of the water
vapor refractivity. The rest of the water vapor refractivity is responsible for most of the wet delay.
The hydrostatic delay component accounts for roughly 90% of the total delay at any given site
globally, but can vary between about 80 and 100% depending on location and time of year. It
can be accurately computed a priori based on reliable surface pressure data using the formula of
Saastamoinen (1972) as given by Davis et al. (1985):

Dhz =
[(0.0022768± 0.0000005)]P0

fs(φ,H)
(9.11)

where Dhz is the zenith hydrostatic delay in meters, P0 is the total atmospheric pressure in hPa
(equivalent to millibars) at the antenna reference point (e.g. antenna phase center for GPS, the
intersection of the axes of rotation for VLBI 3), and the function fs(φ,H) is given in Equation (9.4).

There is currently no simple method to estimate an accurate a priori value for the wet tropospheric
delay, although research continues into the use of external monitoring devices (such as water vapor
radiometers) for this purpose. So, in most precise applications where sub-decimeter accuracy is
sought, the residual delay must usually be estimated with the other geodetic quantities of interest.
The estimation is facilitated by a simple parameterization of the tropospheric delay, where the
line-of-sight delay, DL, is expressed as a function of four parameters as follows:

DL = mh(e)Dhz +mw(e)Dwz +mg(e)[GN cos(a) +GE sin(a)]. (9.12)

The four parameters in this expression are the zenith hydrostatic delay, Dhz, the zenith wet delay,
Dwz, and a horizontal delay gradient with components GN and GE . mh, mw and mg are the
hydrostatic, wet, and gradient mapping functions, respectively, and e is the elevation angle of the
observation direction in vacuum. a is the azimuth angle in which the signal is received, measured
east from north.

Horizontal gradient parameters are needed to account for a systematic component in the N/S
direction towards the equator due to the atmospheric bulge (MacMillan and Ma, 1997), which
are about -0.5/+0.5 mm at mid-latitudes in the northern and southern hemispheres, respectively.
They also capture the effects of random components in both directions due to weather systems.
Failing to model gradients in radiometric analyses can lead to systematic errors in the scale of
the estimated terrestrial reference frame at the level of about 1 ppb, as well as cause latitude
and declination offsets in station and source positions, the latter also depending on the station
distribution (Titov, 2004). A mean a priori model for the gradients which is based on re-analysis
data of the European Centre for Medium-Range Weather Forecasts (ECMWF) is provided by
the subroutine APG.F available at <4> and <2>. However, an a priori model cannot replace the
(additional) estimation of gradient parameters, if observations at elevation angles below 15◦ are
analyzed. In the case of GPS analyses, such low-elevation data could be deweighted because of
multipath effects.

Horizontal tropospheric gradients can reach or exceed 1 mm and their estimation was shown by
Chen and Herring (1997) and MacMillan (1995) to be beneficial for VLBI, and by Bar-Sever et al.
(1998) to be beneficial for GPS. Chen and Herring (1997) propose to use mg(e) = 1/(sin e tan e+
0.0031). Unlike other gradient mapping functions this equation is not affected by singularity at
very low elevations (below 5◦).

2012/08/10

The hydrostatic and wet mapping functions, mh and mw, for the neutral atmosphere depend on
the vertical distribution of the hydrostatic and wet refractivity above the geodetic sites. With
the availability of numerical weather models (NWM) this information can currently be extracted
globally with a temporal resolution of six hours (Niell, 2001). Unlike previous mapping functions
these are not limited in their accuracy by the use of only surface meteorological data, as in the
functions of Ifadis (1986) or in MTT (Herring, 1992), or of the lapse rate and the heights of the

3In the case of VLBI, provision should be made to account for the actual path of the photons due to the possible
altitude variation of the reference point (Sovers and Jacobs, 1996)

4http://ggosatm.hg.tuwien.ac.at/DELAY
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isothermal layer and the tropopause as additionally used in the function of Lanyi (1984), nor by
the use of average in situ properties of the atmosphere, even if validated with radiosonde data,
as in New Mapping Functions (NMF) (Niell, 1996). The general form of the hydrostatic and wet
mapping functions is (Herring, 1992)

mh,w (e) =

1 +
a

1 +
b

1 + c

sin e+
a

sin e+
b

sin e+ c

. (9.13)

The Vienna Mapping Function 1 (VMF1) (Boehm et al., 2006a) is based on exact ray traces
through the refractivity profiles of a NWM at 3◦ elevation and empirical equations for the b
and c coefficients of the continued fraction in Equation (9.13). Niell (2006) compared mapping
functions determined from radiosonde data in 1992 with VMF1 and found that the equivalent
station height standard deviations are less than 3 mm, which is significantly better than for other
mapping functions available. These results are confirmed by VLBI analyses as shown by Boehm
et al. (2007a) and Tesmer et al. (2007), respectively. Thus, VMF1 is recommended for any global
application, such as the determination of the terrestrial reference frame and Earth orientation
parameters.

At the webpage <4>, the a coefficients of VMF1 as derived from data of the ECMWF are provided
with a time interval of 6 hours for the positions of most sites of the International GNSS Service
(IGS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International
DORIS Service (IDS), as well as on a global 2.5◦× 2.0◦ grid. Kouba (2008) compares results from
the grids with VMF1 given at the sites and provides algorithms on how to use the grids.

Empirical values of the a coefficients are also provided by the Global Pressure and Temperature 2
(GPT2) model (Lagler et al., 2013). These coefficients are the input for the subroutine VMF1 HT.F

that can also be driven with the gridded a coefficients of the VMF1. It should be noted that the
a coefficients provided for specific sites at <4> are the input for the subroutine VMF1.F. The a
coefficients of GPT2 are in the tradition of the Global Mapping Functions (GMF) (Boehm et al.,
2006b) and the NMF that can be calculated using only station latitude, longitude (not used by
NMF) and height, and day of the year. The mapping function coefficients in GPT2 are based on
an external global 5◦ × 5◦ grid (file gpt2 5.grd) of mean values as well as annual and semiannual
amplitudes and they were developed with the goal to be consistent with VMF1. Since there is
only an annual and semiannual variation in the mapping function coefficients, GPT2 has to be
called once per 24h session per station. Some comparisons of GMF, VMF1 and other MFs with
radiosonde data may be found in (Niell, 2006). Compared to GPT/GMF, GPT2 has been shown
to provide about a 40% reduction in the differences of the mean annual and semiannual station
height amplitudes of VLBI stations with respect to using VMF1 and recorded pressure values at
the sites (Lagler et al., 2013). GPT2 can be used to generate mapping function coefficients in case
the best accuracy is not required or in case the 6-hourly site-specific or gridded coefficients are not
available. The Fortran subroutines VMF1.F, VMF1 HT.F, GMF.F, and GPT2.F (with the external grid
file gpt2 5.grd) are available at <2> and <4>.

2013/01/15

9.3 Sources for meteorological data

Because 1 mbar pressure error causes an a priori delay error of about 2.3 mm at sea level, it is
essential to use accurate estimates of meteorological data (Tregoning and Herring, 2006). If me-
teorological instrumentation is not available, meteorological data may be retrieved from a NWM,
e.g. the ECMWF as provided together with VMF1 at <4>. In both cases adjustments of the
pressure should be applied for the height difference between the location of the pressure measure-
ment (from in situ instrumentation or from NWM) and the reference point of the space geodesy
instrument. Commonly used formulas for the adjustment can be found in (Boehm et al., 2007b).
Alternatively, local pressure and temperature estimates could be determined with the empirical
models GPT2 (Lagler et al., 2013) or the former GPT (Boehm et al., 2007b). GPT2 is based on
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an external global 5◦ × 5◦ grid (file ’gpt2 5.grd’) and provides pressure, temperature, water vapor
pressure and temperature lapse rate with an annual and semiannual variation at any site close to
the Earth surface. The corresponding Fortran subroutines GPT2.F and GPT.F (with the external
grid file ’gpt2 5.grd’) are available at <2> and <4>.2013/01/15

9.4 Ionospheric model for radio techniques

Dispersive effects of the ionosphere on the propagation of radio signals are classically accounted for
by linear combination of multi-frequency observations. In past years it has been shown that this
approach induces errors on the computed time of propagation that can reach 100 ps for GPS due to
the fact that higher order dispersive effects are not considered. For wide-band VLBI observations,
the induced errors might reach a couple of ps. In this section the estimation of the effect of
higher-order neglected ionospheric terms and possible conventional models are summarized for the
microwave range, with frequencies from hundreds of MHz to few tens of GHz.

9.4.1 Ionospheric delay dependence on radio signals including higher order terms

The delay δρI experienced by the transionospheric electromagnetic signals, travelling from the
transmitter T at ~rT to the receiver R at ~rR, separated by a distance ρ, can be expressed by the
integral of the refractive index n along the ray path:

δρI =

∫ ~rR

~rT

c
dl

v
− ρ =

∫ ~rR

~rT

(n− 1)dl (9.14)

where c = 299792458 m/s is the light speed in free space, v is the actual transionospheric signal
propagation velocity at the given place and dl is the differential length element.

Effects on carrier phase data

By neglecting the frictional force, assuming that we are in a cold, collisionless, magnetized plasma
such as the ionosphere, the refractive index for the carrier phase, np, can be expressed by the
Appleton expression, for both ordinary (upper sign) and extraordinary (lower sign) waves, see for
instance Davies (1990) page 72:

n2p = 1− X

1− Y 2
T

2(1−X) ±
[

Y 4
T

4(1−X)2 + Y 2
L

] 1
2

(9.15)

where

X =
ω2
p

ω2
, YL = −ωg

ω
cos θ, YT = −ωg

ω
sin θ, (9.16)

where θ is the angle between the magnetic field ~B and the electromagnetic (EM) propagation

direction ~k, and where ω = 2πf is the circular frequency corresponding to a frequency f . This
applies to the carrier circular frequency ω, and to the plasma ωp and gyro ωg circular frequencies
associated to the free electrons of the ionosphere:

ω2
p =

Neq
2

meε0
ωg =

Bq

me
(9.17)

where Ne is the number density of free electrons and B is the magnetic field modulus (both
depending on time and position along the EM ray), q = 1.602176565×10−19C is the absolute value
of the electron charge, me = 9.10938291× 10−31kg is the electron mass and ε0 = 8.854187817×
10−12F/m is the electric permittivity (Mohr et al., 2012) in free space (vacuum). Extraordinary
waves (lower sign) can be typically associated to right hand polarized EM signals such as those of
GPS antennas, and most L and S Band antennas that receive satellite signals.

2013/01/15

For signals with frequencies ω >> ωp (and hence ω >> ωg) as for GNSS we may expand (9.15) into
a second-order Taylor approximation and retain only terms up to f−4, similarly to the approach
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of Bassiri and Hajj (1993). The result is, see (Datta-Barua et al. 2008) for a detailed discussion
of several approximation ways adopted by different authors:

np = 1− 1

2
X ± 1

2
XYL −

1

8
X2 − 1

4
X · Y 2(1 + cos2 θ) (9.18)

where Y 2 = Y 2
L + Y 2

T =
(ωg

ω

)2
and again upper sign represents ordinary wave, and lower sign

represents extraordinary wave.

The following explicit expression for np can be obtained for extraordinary EM signals in terms
of the main physical constants and parameters, after substituting X, YL and YT from equations
(9.16):

np = 1− q2

8π2meε0
· Ne

f2
− q3

16π3m2
eε0
· NeB cos θ

f3

− q4

128π4m2
eε

2
0

· N
2
e

f4
− q4

64π4m3
eε0
· NeB

2(1 + cos2 θ)

f4
(9.19)

Inserting equation (9.19) into (9.14) leads to the following ionospheric dependent terms in the
carrier phase, up to third (f−4) order:

δρI,p = − s1
f2
− s2
f3
− s3
f4

(9.20)

After substituting the physical constants, me, q, ε0, with 5 significant digits the first, second and
third order coefficients, s1, s2 and s3, read (note that the International System of Physical Units
(SI) is used, e.g. magnetic field is expressed in Tesla):

s1 = 40.308

∫ ~rR

~rT

Nedl (9.21) 2013/01/15

s2 = 1.1283 · 1012
∫ ~rR

~rT

NeB cos θdl (9.22) 2013/01/15

s3 = 812.38

∫ ~rR

~rT

N2
e dl + 1.5792× 1022

∫ ~rR

~rT

NeB
2
(
1 + cos2 θ

)
dl (9.23) 2013/01/15

These expressions are fully equivalent for instance to Equations (2) to (5) in Fritsche et al. (2005).

It can be seen in the last expressions (9.20) to (9.23) that the ionospheric delay on the carrier
phase is negative, indicating an increase of the phase velocity of the EM transionospheric signal
propagation.

In order to assess the importance of the different ionospheric terms for δρI,p in Equation (9.20),
we start with the first term, assuming a high value of Slant Total Electron Content (STEC, see

Section 9.4.2 for more details) of S =
∫ ~rR
~rT

Nedl ≈ 300× 1016m−2:

2013/01/15δρI,p,1 = −40.308S

f2
≈ −1.2× 1020

f2
(9.24)

In this case we obtain a first ionospheric order term δρI,p,1 of up to several km of delay for
f ' 150 MHz (negative for the carrier phase), corresponding to the lower frequency of the NIMS
satellite system (U.S. Navy Ionospheric Measuring System, formerly TRANSIT), and of up to
several tens of meters for f = 1575.42 MHz (L1 GPS carrier frequency).

The relative importance of the first (δρI,p,1 = −s1/f2), second (δρI,p,2 = −s2/f3) and third order
terms (δρI,p,3 = −s3/f4) also depends on the frequency. The higher order terms are increasingly

7



less important for increasing frequencies (e.g. for VLBI frequencies compared to GPS frequencies).
Indeed, from Equations (9.20) to (9.23):

δρI,p,2
δρI,p,1

=
2.7992× 1010

f
·
∫ ~rR
~rT

NeB cos θdl∫ ~rR
~rT

Nedl
(9.25)

2013/01/15

By taking typical values reflecting the order of magnitude of |B0 cos θ0| ' 104nT at a given effective
height to evaluate both integrals, the order of magnitude of the ratio of second to first order
ionospheric term can be approximated by:

δρI,p,2
δρI,p,1

' 2.7992× 1010

f
|B0 cos θ0| ≈

2.8× 105

f
(9.26)2013/01/15

The value of δρI,p,2 is thus typically only 1% of that of δρI,p,1 for f ' 150 MHz (NIMS), and only
0.1% for f = 1575.42 MHz (GPS L1 carrier).

Similarly, the order of magnitude of the relative value between third and second order ionospheric
terms can be estimated as:

δρI,p,3
δρI,p,2

=
7.1998× 10−10

f
·

∫ ~rR
~rT

N2
e dl∫ ~rR

~rT
NeB cos θdl

+
1.3996× 1010

f
·
∫ ~rR
~rT

NeB
2
(
1 + cos2 θ

)
dl∫ ~rR

~rT
NeB cos θdl

(9.27)

Considering the typical values used above reflecting order of magnitude of |B0 cos θ0| ' 104nT at
a given effective height to evaluate the integrals, an intermediate angle of θ0 = 45 deg, and taking

N0 ' 1012m−3 a raw order of magnitude value of effective electron density fulfilling N0 ·
∫ ~rR
~rT

Nedl =∫ ~rR
~rT

N2
e dl, we get the following relative order of magnitude value between third and second order

ionospheric terms:

δρI,p,3
δρI,p,2

' 1

f

(
7.1998× 10−10

N0

|B0 cos θ0|
+ 1.3996× 1010 · 3

2
|B0 cos θ0|

)
≈ 7.2× 107 + 2.1× 105

f
(9.28)

The order of magnitude of the ratio between third and second order ionospheric terms can thus be
as high as about 50% for NIMS frequency f ' 150 MHz but less than 10% for f = 1575.42 MHz,
the L1 GPS carrier frequency.

Another conclusion from this approximation is that the second integral in (9.23) can typically be
neglected compared to the first integral depending only on the electron density, as it is typically
two orders of magnitude smaller, see Equation (9.28):

s3 ' 812

∫ ~rR

~rT

N2
e dl (9.29)

Finally, in order to show that third order ionospheric approximation should be adequate for most
of the radio astronomic-geodetic techniques, we can consider the fourth order term δρI,p,4 in the
carrier phase delay. It can be deduced in a similar way as the first to third order terms, but now
keeping the terms f−5 in the Taylor expansion of Equation (9.15) in the corresponding fourth
order term δnp,4 of the carrier phase ionospheric refraction index term

δnp,4 = −1

2
XYL

(
X

2
+ Y 2

[
1 +

1

8
sin2 θ tan2 θ

])
(9.30)
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which is expressed with the same notation as in the previous expressions. Using Equations (9.16)
and (9.17) as well as Equation (9.14), the fourth order ionospheric term in delay can be expressed
as:

δρI,p,4 = − s4
f5

(9.31)

where

s4 =
q5

128π5me
3ε02

∫ ~rR

~rT

N2
eB cos θdl +

q5

64π5me
4ε0

∫ ~rR

~rT

NeB
3f(θ)dl (9.32)

and where f(θ) = cos θ
(
1 + 1

8 sin2 θ tan2 θ
)
. Substituting the values of the constants we get:

s4 = 4.5481× 1013
∫ ~rR

~rT

N2
eB cos θdl + 8.8413× 1032

∫ ~rR

~rT

NeB
3f(θ)dl (9.33)

Taking into account Equations (9.31), (9.33), (9.20) and (9.29), the ratio between the fourth and
third ionospheric order terms can be written as:

δρI,p,4
δρI,p,3

=
1

f

(
5.5985× 1010

∫ ~rR
~rT

N2
eB cos θdl∫ ~rR

~rT
N2

e dl
+ 1.0883× 1030

∫ ~rR
~rT

NeB
3f(θ)dl∫

~rR
N2

e dl

)
(9.34)

2013/01/15

Taking into account the same approximations and typical values than before, the ratio can be
expressed as:

δρI,p,4
δρI,p,3

' 1

f

(
5.6× 1010|B0 cos θ0|+ 1.1× 1030

|B0 cos θ0|3f(θ0)

N0| cos3 θ0|

)

≈ 1

f

(
5.6× 105 + 2.3× 103

)
(9.35)

According to this expression the fourth order ionospheric term is only 1% of the third order term
for f ' 150 MHz (NIMS) and less than 0.1% for the L1 GPS carrier at f = 1575.42 MHz. Another
conclusion from this development is that the fourth order term can be approximated by the first
term in Equation (9.33):

s4 ' 4.55× 1013
∫ ~rR

~rT

N2
eB cos θdl (9.36)

Table 9.2 provides delays corresponding to ionospheric terms of different order and different fre-
quencies of interest in radio astronomic-geodetic research, with the same approximations and par-
ticular values as above (|B0 cos θ0| ≈ 104nT , N0 ≈ 1012m−3 and S ≈ 3×1018m−2). It can be seen,
taking as significant threshold the delay value of 1mm, that:

• The first order ionospheric term, as expected, is significant for all the considered frequencies.

• The second order ionospheric term should be taken into account for all the frequencies, except
for the high VLBI frequency and those used for Ku band time transfer.

• The third order ionospheric term should be taken into account in NIMS and DORIS low
frequencies. It is at the significance limit for GPS and high DORIS frequencies and can be
neglected for VLBI and time transfer Ku band frequencies.

• The fourth order can be neglected, except for the very low NIMS frequency of 150 MHz.
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Table 9.2: Delays (in millimeters) corresponding to the first to fourth higher order ionospheric delay
terms (in columns) for a representative subset of typical frequencies used in radio astronomy and
geodesy: the values are based on typical values of |B0 cos θ0| ∼ 104 nT, θ0 = π/4, N0 = 1012m−3 and
S = 3× 1018m−2 (the values that can be typically neglected –those lower than 1 mm– can be clearly
identified by a negative exponent).

f / MHz Technique δρI,p,1 / mm δρI,p,2 / mm δρI,p,3 / mm δρI,p,4 / mm

150 NIMS −5.3 · 106 −9.9 · 103 −4.8 · 103 −1.8 · 101

400 NIMS / DORIS −7.5 · 105 −5.2 · 102 −9.4 · 101 −1.3 · 10−1

1228 GPS (L2) −8.0 · 104 −1.8 · 101 −1.1 · 100 −5.0 · 10−4

1575 GPS (L1) −4.8 · 104 −8.5 · 100 −3.9 · 10−1 −1.4 · 10−4

2000 DORIS −3.0 · 104 −4.2 · 100 −1.5 · 10−1 −4.2 · 10−5

2300 Low VLBI f. −2.3 · 104 −2.8 · 100 −8.8 · 10−2 −2.2 · 10−5

8400 High VLBI f. −1.7 · 103 −5.7 · 10−2 −4.9 · 10−4 −3.3 · 10−8

12000 Time trans. low Ku f. −8.3 · 102 −1.9 · 10−2 −1.1 · 10−4 −5.2 · 10−9

14000 Time trans. high Ku f. −6.1 · 102 −1.2 · 10−2 −6.2 · 10−5 −2.5 · 10−9

Ray bending effects on geometric path excess and ionospheric delay 2012/08/10

Moreover the effect of the curvature (or bending) of the ray in terms of geometric path excess can
be considered as an additional correction ∆s3 (typically up to few millimeters at low elevation
for GPS frequencies), appearing as a f−4 dependence too, which can be easily added to the s3
coefficient of Equation (9.47). In particular Jakowski et al. (1994) derived a simple expression by
ray tracing for GPS in which, with the notation introduced above, the coefficient of the f−4 term
approximating the bending effect is:

∆s3 ' 2.495× 108[(1− 0.8592 cos2E)−1/2 − 1] · Ŝ2 (9.37)

where E is the spherical elevation, i.e. the complement of the zenith angle with respect to the
geocenter direction and where the units are not in SI system: the STEC Ŝ in TECU=1016m−3,
the elevation E in degrees and the factor ∆s3 in mm·(MHz)4. This expression is a particular
approximation for GPS of the general results obtained for different frequencies. Details of the
typical dependences for other frequencies can be seen in Figure 9.1 for different levels of electron
content (8, 40 and 100 TECU) and different elevations (10, 25 and 50 degrees).

More recently Hoque and Jakowski (2008) proposed an update for this expression taking into
account the dependence not only on the STEC but also on the vertical distribution of electron
content (by considering the F2 layer scale and maximum ionization heights, see Equation (23) in
the given reference). For now we retain Equation (9.37) for this document because, as the authors
recognize in the same paper, currently these parameters are not easily available in practice. A
comparison of formulae for the bending correction including those of Jakowski et al. (1994) and
Hoque and Jakowski (2008) is given in the review by Petrie et al. (2011).

As the ray bending depends on the carrier frequency, an additional effect on the ionospheric
correction appears when two different carriers are used, because the STEC differs on the two paths.
It is effectively due to the imperfect cancelation of the first order ionospheric term. Following Hoque
and Jakowski (2008, Eq. (31)), this effect decreases rapidly with increasing elevation angle, but
may be the largest of the higher order ionospheric errors at low elevations (Hoque and Jakowski,
2008; Figure 7). However, modeling this effect also requires knowledge of the vertical distribution of
electron content. A test implementation of the bending corrections outlined by Hoque and Jakowski
(2008) on a global GPS network using IRI2007 data was performed by Petrie et al. (2010b). They
found that the majority of the correction was absorbed by the estimated tropospheric parameters,
due to the similar elevation-dependence of the tropospheric mapping functions, with little effect on
coordinates and GPS reference frame. However, as the IRI model is climatic rather than accurate
on a day to day basis, they consider their implementation to give an idea of the size of the bending
corrections, rather than accurate corrections.
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Figure 9.1: Results of ray-tracing calculations concerning the dependence of
the excess path length from the frequency of the propagation radio wave. At
frequencies below 600 MHz the calculations correspond to a satellite height
hs = 1000km (NIMS/NNSS, DORIS) whereas above 600 MHz the calcu-
lations correspond to a satellite height hs = 20000km (GPS, GLONASS)
[Figure kindly provided by Dr. Norbert Jakowski, see Jakowski et al. (1994)]

As improved ionospheric data and probably further testing is thus needed to model the bending
terms accurately, there is currently no model considered conventional. It is also noteworthy that for
the ionosphere-free combination of carrier phases (see Section 9.4.2), the two bending corrections
tend to partially cancel when both geometric and dSTEC bending are considered (Hoque and
Jakowski, 2008), so modeling one without the other has the potential to produce misleading results.
Finally, for those interested in GPS radio occultation, the paper by Hoque and Jakowski (2010)
extends their earlier results to assess this area.

Effects on code pseudorange data

The corresponding effect can be computed for the code pseudorange measurements, by using the
well known relationship between phase and code refractive indices, np and nc respectively, relating
the phase velocity with the group (code) velocity, see for instance Davies (1990, p. 13):

nc = np + f
dnp
df

(9.38)

A similar relationship holds for the code and carrier phase ionospheric delays, δρI,c and δρI,p, after
introducing Equation (9.38) in Equation (9.14):

δρI,c = δρI,p + f
d

df
δρI,p (9.39)

Applying Equation (9.39) to Equation (9.20), the ionospheric effect on code ionospheric delay, up
to third order term, is:

δρI,c =
s1
f2

+ 2
s2
f3

+ 3
s3
f4

(9.40)
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It can be seen from this relationship, taking into account Equations (9.21), (9.22) and (9.23), that
the ionospheric delay on the code pseudorange is positive, associated to a decrease of the EM signal
group velocity in the transionospheric propagation.

9.4.2 Correcting the ionospheric effects on code and phase

The most efficient way of correcting the ionospheric effects is by combining simultaneous measure-
ments in k different frequencies, which allows to cancel the ionospheric effects up to order k − 1,
taking into account Equations (9.20) and (9.40) for carrier phase and code, respectively. A well
know example is the case of the actual GPS system with two frequencies, which allows to cancel
out the first order ionospheric effect by the so called ionospheric-free combination of observables
(see below). And in the future, with Galileo and modernized GPS systems (broadcasting at three
frequencies), the full correction can be extended to second order ionospheric terms too.

Correcting the ionospheric term for single frequency users

If the user is only able to gather measurements at a single frequency f , then his main problem is
to correct as much as possible (or at least mitigate) the first order ionospheric terms in phase and
code measurements, δρI,p,1 (9.20) and δρI,c,1 (9.40), which account for more than 99.9% of the
total ionospheric delays, as we have shown above. Following (9.21) the first order ionospheric terms

are only dependent on the Slant Total Electron Content S =
∫ ~rR
~rT

Nedl and the signal frequency:

δρI,p,1 = −40.308 S
f2

δρI,c,1 = +40.308 S
f2

}
(9.41)2013/01/15

Taking into account this expression, the single frequency users with available phase and code
measurements at frequency fa, and not interested on precise positioning, can use as main observable
the so called Graphic combination Ga = 1

2

(
ρac + ρap

)
. In this way the I1 ionospheric delay is

completely removed at the price of having an observable with the half part of the code thermal
and multipath noise, maintaining as additional unknown the carrier phase ambiguity for each
continuous arc of phase data. However the graphic combination can be convenient for real-time
users with relatively low requirements of accuracy, in conditions of maximum solar activity and/or
low latitude and daylight time or strong ionospheric storms scenarios.

On the other hand, there are different available external sources for the STEC S, which allow to
directly correct the single frequency observables. Many of them provide the vertically integrated
ionospheric free electron density, the so called Vertical Total Electron Content (VTEC), globally
or at least at regional scale.

From the VTEC values (V ) corresponding to the observation time, the STEC S can be estimated
thanks to a factor approximating the conversion from the vertical to the slant Total Electron
Content: the so called ionospheric mapping function, M , by S = M · V .

Typically a thin shell spherical layer model, at a fixed effective ionospheric height h, is applied:

M =
1√

1− r2 cos2 E
(r+h)2

(9.42)

where r and E are the geocentric distance and ray spherical elevation taken from the user receiver.
In the case of IGS the adopted effective height is h = 450km. This approximation can introduce
significant errors as well, of 5% or more, specially when the 3D nature of the electron density
distribution Ne has a larger impact on the integrated (total electron content) values: at low
elevation or low latitude observations, see for instance Hernández-Pajares et al. (2005). Other
better approximations are possible, as Modified Single Mapping Function (Hugentobler et al. 2002),
variable effective height, see Komjathy and Langley (1996) and Hernández-Pajares et al. (2005)
or multilayer tomographic model, see for instance Hernández-Pajares et al. (2002).

Some common sources of electron content are:
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• Global VTEC maps, such as those computed by the International GNSS Service (IGS) <5>
from a global network of dual-frequency receivers. The user can compute its STEC, S, from
interpolating the VTEC maps and applying the corresponding mapping function given by
Equation (9.42) with h = 450km in IGS IONEX format, see Schaer et al. (1998). The IGS
VTEC maps have typically errors of 10 to 20%, see for instance Hernández-Pajares (2004)
and Orús et al. (2002).

• Predicted VTEC models such as those used by GNSS: Klobuchar model broadcasted in GPS
navigation message, or NeQuick <6> for the future Galileo system. They can show average
errors up to 50% (up to 30% at low latitude, see for instance Orús et al. (2002) or Aragón
et al. (2004). Moreover predicted Global VTEC maps are available from IGS center CODE
server <7>.

• Regional VTEC models, which provide better accuracy by means of a better temporal and
spatial resolution, thanks to the availability of dense networks of permanent receivers (e.g.
for Japan, Europe or USA).

• Empirical standard models of the Ionosphere, based on all available data sources, such as the
International Reference Ionosphere (IRI, Bilitza 1990) available at <8> or PIM (Daniell et
al. 1995) available at <9>. If they are adjusted to the actual conditions by means of one or
several parameters, such as the Sun Spot Number (Bilitza et al. 1999), these empirical models
can provide at least similar performance than predicted VTEC models for GNSS. Otherwise
the performance can be poor, depending on the region and time.

Correcting the ionospheric term for dual frequency users In case the user is able to gather
two simultaneous measurements at two frequencies, fa and fb, the situation is much better, because
the first order term can be cancelled, elliminating more than 99.9% of the total ionospheric delay.

The first-order-ionospheric-free combination ρ
(1)
p is defined by the weight factors f2a and −f2b as

ρ(1)p (a, b) =
f2aρ

(a)
p − f2b ρ

(b)
p

f2a − f2b
. (9.43)

If the measurements at the two frequencies are not exactly simultaneous, with a time offset small
enough to consider that the electron content does not vary between the two measurements, the
linear combination can still be applied but it is necessary to account for the time offset10.

The first-order-ionospheric-free combination leads to the following new ionospheric dependencies,

for carrier phase and code (δρ
(1)
I,p and δρ

(1)
I,c respectively), after considering Equations (9.20) and

(9.40):

δρ
(1)
I,p =

f2aδρ
(a)
I,p − f2b δρ

(b)
I,p

f2a − f2b
=

s2
fafb(fa + fb)

+
s3
f2af

2
b

(9.44)

δρ
(1)
I,c =

f2aδρ
(a)
I,c − f2b δρ

(b)
I,c

f2a − f2b
= − 2s2

fafb(fa + fb)
− 3s3
f2af

2
b

(9.45)

where s2 and s3 depend on electron density Ne and magnetic field ~B, according to expressions
(9.22) and (9.29). The following approximations can be done to facilitate the computations:

s2 = 1.1283× 1012
∫ ~rR

~rT

NeB cos θdl ' 1.1283× 1012Bp cos θp · S (9.46)

where Bp and θp are the magnetic field modulus and projecting angle with respect to the propa-

2013/01/15

5ftp://cddisa.gsfc.nasa.gov/pub/gps/products/ionex/
6http://www.itu.int/ITU-R/study-groups/software/rsg3-p531-electron-density.zip
7ftp://ftp.unibe.ch/aiub/CODE
8http://modelweb.gsfc.nasa.gov/ionos/iri.html
9http://www.cpi.com/products/pim/pim.html

10For example, in some of the Doris instruments, the difference between the two measurement times ta and tb can
reach 20 microseconds. In this case, it can be shown (Mercier, 2009) that it is sufficient to consider that the linear
combination (9.43) should be considered as a measurement taken at the epoch t(1) = (f2a ta − f2b tb)/(f2a − f2b ).
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gation direction, at an effective pierce point p, and S is the integrated electron density, or STEC
S. This approximation is used by Kedar et al. (2003) and Petrie et al. (2010a), and in other
references cited above.

For this equation, a source of magnetic field is needed, which should be more realistic than the
dipolar one, such as the International Magnetic Reference Field (IMRF) available at <11> or the
Comprehensive Model 12 available at <13> , to reduce errors of up to more than 60% in certain
regions, see a discussion in Hernández-Pajares et al. (2007). Both models are provided as Fortran
routines: the IMRF model is provided with a short description of the arguments as the subroutine
igrf10syn in the file igrf10.f at <11>. The Comprehensive Model CM4 is provided with a complete
description of the arguments as cm4field.f at <13>.

The third order coefficient can be approximated in terms of the maximum electron density along
the ray path Nm:

s3 ' 812

∫ ~rR

~rT

N2
e dl ' 812ηNmS (9.47)

We may take η ' 0.66 and Nm can be expressed as function of the slab thickness H (which can be
modelled as function on the latitude and local time) and the VTEC V , see more details in Fritsche
et al. (2005) and references therein.

These expressions typically lead for GPS to values of up to few centimeters for the second order

ionospheric correction: for instance δρ
(1)
I,p ' 2 cm for a given observation with high STEC values

(such as S ' 300 TECU = 3× 1018 m−3) and magnetic field projection of B cos θ ' 3× 104nT .

Moreover the geometric path excess produced by the ray curvature (or bending) can be considered
as an additional term depending on f−4, for instance using expression (9.37).

Then, to evaluate δρ
(1)
I,p and δρ

(1)
I,c we need as well an STEC source for S, as in the case of single

frequency users (see previous subsection). In this case, the double frequency measurements can be
used, to provide a direct estimate of S, from the first order term which contains more than 99.9%
of it. For instance in GPS S can be estimated from the ionospheric (geometry-free) combination
of carrier phases LI = L1−L2 and codes PI = P2−P1, where Li and Pi are the carrier phase and
code measurements for carrier frequency fi, in length units. Indeed, writing LI

14 and PI in terms
of the corresponding BI term (which includes the carrier phase ambiguity and the interfrequency
phase biases) and interfrequency delay code biases (DCBs) for receiver and transmitter D and D′:

LI = αS +BI , PI = αS +D +D′, (9.48)

where α = 40.308 · (f−22 − f−21 ) ' 1.05 · 10−17m3, the STEC S can be estimated as S = (LI− <
LI − PI > −D − D′)/α, where < · > is the average along a carrier phase continuous arc

2013/01/15

of transmitter-receiver data with no phase cycle-slips. This way of computing the STEC has
certain advantages, specially when no external sources of STEC are available (such as in real-time
conditions) or at low latitudes and elevations, see Hernández-Pajares et al. (2007) for corresponding
discussion.

Equations (9.44) to (9.47), with an adequate source of STEC and magnetic field (see above) provide
a conventional method to correct the ionospheric higher order terms for dual frequency users.

An alternative approach to correcting the GPS measurements is to apply the second order iono-
spheric correction by means of redefining the first-order ionospheric free combination of observables

11http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
12This model provides different components of the magnetic field besides the main field generated by sources inside

the Earth. The external field is caused by charged particle currents in the space around it, primarily in the ionosphere.
A calculation of the contribution of these currents to the total magnetic field within the ionosphere has suggested that
it is almost two orders of magnitude smaller than that of the main field there, even under geomagnetic storm conditions.
If so, the external field can be neglected when computing the second order ionospheric correction.

13http://core2.gsfc.nasa.gov/CM/
14The wind-up or transmitter-to-receiver antennas rotation angle, is not explicitely written here due its typical small

amount -up to less than about 1% of STEC in GPS for example-.
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(Brunner and Gu 1991), for instance in terms of the line-of-sight magnetic field projection term
15. This approach has the disadvantage of producing a time dependent carrier phase bias. More
details on pros and cons of different approaches for higher order ionospheric corrections, including
regional models such as Hoque and Jakowski (2007), can be found in Hernández-Pajares et al.
(2008).

In the case of DORIS instruments, the measurements are directly the phase variations between
successive epochs (intervals of 7 or 10 seconds). They can be processed using the time-differenced
first-order-ionospheric-free combination (9.43). For example, for ionospheric studies, this leads
to a differential VTEC. VTEC may be deduced with an iterative process (Fleury and Lassudrie,
1992, Li and Parrot, 2007). For the recent instruments (Jason 2 and after), the undifferenced
phase and pseudo-range measurements are also available. The pseudo-range measurements are
only used to synchronize the on-board oscillator in order to estimate with a sufficient accuracy
the measurement time. The first order ionospheric effect can also be removed here using the
corresponding combination. For higher order terms, it possible to use as corrections for Doppler
the time differences of those for the carrier phase, calculated using the equations for phase given
above. But some caution is necessary for DORIS, where the second order effect on the equivalent
carrier phase is several times larger than for GPS, on account of the different choice of frequencies.
The errors made in the phase correction, and therefore, in the time-differenced phase correction,
will be larger. It is not necessary to apply these corrections on the code measurements because
the required precision for synchronisation is not so high as for phase processing.

Correcting the ionospheric term for multi (three or more)-frequency users

GNSS systems offering simultaneous observations in 3 or more frequencies should be available soon.
Thence, in principle, it should be possible to cancel, from these k simultaneous observations of the
same transmitter-receiver pair, up to the first k − 1 ionospheric order terms.

As an example, and from Equation (9.43) applied to two pairs of three consecutive frequencies (fa,
fb and fc), is possible to define a combination of carrier phase observables that is first and second

order ionospheric free, ρ
(2)
p :

ρ(2)p =
fafb(fa + fb)ρ

(1)
p (a, b)− fbfc(fb + fc)ρ

(1)
p (b, c)

fafb(fa + fb)− fbfc(fb + fc)
(9.49)

And in terms of the basic observables, given by Equation (9.43), it can be written as:

ρ(2)p =
1

fa + fb + fc

(
f3aρ

(a)
p

(fa − fb)(fa − fc)
+

f3b ρ
(b)
p

(fb − fa)(fb − fc)
+

f3c ρ
(c)
p

(fc − fa)(fc − fb)

)
(9.50)

From here and from Equation (9.44) the following remaining higher order ionospheric dependence
can be deduced:

δρ
(2)
I,p =

s3
fafc(f2b + fb[fa + fc])

(9.51)

A similar definition to Equation (9.49) can be derived for the code observations resulting, by using
Equation (9.45), in the following remaining higher order ionospheric dependency:

δρ
(2)
I,c =

−2s3
fafc(f2b + fb[fa + fc])

(9.52)

However it must be pointed out that the combination significantly increases the measurement
noise. Indeed, from Equation (9.50), considering a simple hypothesis of gaussian independent and
identical gaussian distribution for the measurement noise at different frequencies, it is easy to
show that the increase of measurement noise is very important (e.g. 25x in Galileo E1, E6, E5
frequencies, 34x in GPS L1, L2, L5, 52x in Galileo E1, E5a, E5b).

15From Equation (9.48) and the definition of the first-order ionospheric free combination of carrier phases Lc ≡
(f21L1− f22L2)/(f21 − f22 ) = ρ? +Bc (where ρ? contains the frequency independent terms –including geometric distance,
clock errors and tropospheric delay– and Bc the carrier phase bias), an apparently first and second order iono free
combination of carrier phases can be easily derived L′

c = ρ? + B′
c, where L′

c = Lc − s2LI/(f1f2(f1 + f2)) and B′
c =

Bc − s2BI/(f1f2(f1 + f2)) are the new combination of observables and time-varying carrier phase bias, respectively.
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